Measuring mechanodynamics in an unsupported epithelial monolayer grown at an air–water interface
نویسندگان
چکیده
Actomyosin contraction and relaxation in a monolayer is a fundamental biophysical process in development and homeostasis. Current methods used to characterize the mechanodynamics of monolayers often involve cells grown on solid supports such as glass or gels. The results of these studies are fundamentally influenced by these supporting structures. Here we describe a new method for measuring the mechanodynamics of epithelial monolayers by culturing cells at an air-liquid interface. These model monolayers are grown in the absence of any supporting structures, removing cell-substrate effects. This method's potential was evaluated by observing and quantifying the generation and release of internal stresses upon actomyosin contraction (800 ± 100 Pa) and relaxation (600 ± 100 Pa) in response to chemical treatments. Although unsupported monolayers exhibited clear major and minor strain axes, they were not correlated with nuclear alignment as observed when the monolayers were grown on soft deformable gels. It was also observed that both gels and glass substrates led to the promotion of long-range cell nuclei alignment not seen in the hanging-drop model. This new approach provides us with a picture of basal actomyosin mechanodynamics in a simplified system, allowing us to infer how the presence of a substrate affects contractility and long-range multicellular organization and dynamics.
منابع مشابه
Measuring Mechanodynamics using an Unsupported Epithelial Monolayer Grown at an Air-Water Interface
Actomyosin contraction and relaxation in a monolayer is a fundamental biophysical process in development and homeostasis. Current methods used to characterize the mechanodynamics of monolayers often involve cells grown on solid supports such as glass or gels. The results of these studies are fundamentally influenced by these supporting structures. Here, we describe a new methodology for measuri...
متن کاملAn Improvement in Fluorocarbon Chain Re-orientation by Reactive Dyes
There is an increasing demand for air-dry performance of fluorocarbon finished materials. Thus, dyeing with different types of reactive, mono, bi, and multi-functional, dyes was evaluated as a novel treatment to create correct surface interface to maintain fluorocarbon performance without ironing or tumble drying. The effects of pre-treatment on fluorocarbon finishing of cotton fabric, a cellul...
متن کاملInfluence of the environment on photoinduced electron transfer: comparison between organized monolayers at the air-water interface and monolayer assemblies on glass.
Photoinduced electron transfer (PET) has been investigated in organized monolayers at the air-water interface and in monolayer assemblies on glass in an effort to evaluate the influence of solvent reorganization and molecular dynamics on PET. The donor monolayer contained an amphiphilic thiacyanine dye, and the electron acceptors were methyl viologen and dioctadecyl viologen, respectively. The ...
متن کاملForces and physical properties of the Langmuir monolayers of TiO2 particles at air/water interfaces after collisions by a particle in water
The effect of a microsphere colliding with a particle stabilized emulsion was investigated by using a Langmuir monolayer of TiO2 particles at an air/pH 2 water interface and a TiO2 particle attached to a cantilever (probe) in the subphase. TiO2 particles with diameters (D) of 75 nm, 300 nm, 3 mm and 10 mm were used to determine the effect of the particle size on the physical properties of the i...
متن کاملGold Nanoparticle Monolayers from Sequential Interfacial Ligand Exchange and Migration in a Three-Phase System
Using a three-phase system, centimeter-scale monolayer gold nanoparticle (Au NP) films have been prepared that have long-range order and hydrophobic ligands. The system contains an interface between an aqueous phase containing Au NPs and an oil phase containing one of various types of amine ligands, and a water/air interface. As the Au NPs diffuse to the water/oil interface, ligand exchange tak...
متن کامل